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J C Martinez 
Department of Mathematics, University of Malaya, 59100 Kuala Lumpur, Malaysia 

Received 6 October 1986 

Abstract. We obtain the Green function for a non-relativistic charged particle moving in 
the field of a Dirac monopole. Several properties of the Green function are derived. 

The Green function has held a time-honoured place in quantum theory. Recent 
developments have only served to verify its utility in many areas of physics (see, for 
instance, Gutzwiller et al 1986). It appears, however, that little attention has been 
given to applying the Green function to scattering off a monopole. In this letter we 
address ourselves to the non-relativistic scattering problem and show that the Green 
function can provide useful insights into monopole physics, a subject gaining more 
prominence in recent years. 

Although a number of conclusions will immediately emerge from our results, 
perhaps the most important one is the derivation of a non-integrable phase factor. 
Over ten years ago a formulation of gauge fields in terms of non-integrable phase 
factors was advocated by Wu and Yang (1975). Many of their arguments were based 
on the classical notion of ‘path’. We show here that for a charge-monopole system a 
quantum derivation of this factor can be given. This calculation gives us confidence 
that the phase factor really describes the transition amplitude for a charge moving 
about a monopole and not a flux about some hypothetical path. Classically such paths 
make sense, but in the quantum theory the concept of path gives way to that of the 
transition amplitude. 

We begin by writing down the Schrodinger equation for a charge e of mass M in 
the field of an infinitely massive monopole of charge g :  

-2- ( p - ; A) 2+ = E+ 
2M 

where the vector potential A is given in spherical coordinates by 

A = 4 ( g / r )  tan(f6) (2) 
with 

B = V x A = g r / r ’ .  

The vector potential is singular along the t axis. By imposing the Dirac quantisation 
condition 

(3) 
it can be shown that henceforth this string singularity plays no role in the physics of 
the system (Dirac 1931). The eigensolutions of this problem have been known for 

e g /  hc = s = integer or half-integer 
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some time (Goldhaber 1965, Boulware et a1 1976) and are given by 

+,,,,(r) = (U+  1)”2jq(kr)d!<)ms(8)  exp(im4) 

J=IsJ, J s J +  1, IsI+2,. a .  

m = - J , - J + l ,  . . . ,  J - l , J  (4) 

q +; = [ ( J  + t)’ - s 2 y  

k =(2ME)’l2 E>O 

where j ,  is a spherical Bessel function, d‘” is a rotation function and s is defined by 
(3). There are no negative-energy solutions. 

The Green function may now be written as an expansion in terms of the normalised 
eigensolutions: 

x exp -i - ( t  - t ’ )  d??ms( 8 )d~! . !ms(8 ’ )  exp[im(4 - +’)I. ( 5 )  ( 2 M  k2 ) 
Here we assume t > t ’ .  The sum over m may be carried out following the usual rules 
of angular momentum algebra (Edmonds 1960): 

di<)ms( 6)d?-)ms( 8’) exp[im( 8 - e’)] 
m 

=C DL:Lm(4, -8, -4 )D!<)ms(4 ’ ,  e’, -4 ’ )  

= D6%, 7, P )  (6) 

where (a, y, p )  are the Euler angles corresponding to the successive rotations 
(4’, e’, -4 ’ )  and (4,  -8, - 4 )  and 

cos y = cos 8 cos 8’+ sin 8 sin 8’ cos( 4’- 4) .  
The k integral is not convergent. However, if we go over to Euclidean space 

( t  - t ’ )  + -i( t - t ’ ) ,  then the integral may be evaluated using Weber’s formula (Watson 
1958). In Minkowski space then our Green function takes the form 

where p = q +f, T = t - t’ and R = (Y + p  is the solid angle subtended at the origin by 
the z axis and the vector r and r’. We see above the phase factor exp(isR). Several 
consequence may now be obtained. 

( a )  We may calculate the scattering amplitude as follows. The scattered wave 
+ : ( r )  has the form 

2rilt‘l 3/2 
+: ( r )  = i’+-m lim (7) G(r ,  0; r‘, t ’ )  exp[i(k r - k2t2/2M)] 
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as shown by Pechukas (1969). Substituting the expression for G we have 

$:(r) --exp(isCl) C (2J+  l)d$’,’(y)[exp(ikr) e: ?( - iTW)+i  exp(-ikr)]. 

The second term represents an incoming wave so that the scattered wave is simply 

(8) 
1 

2kr J 

$seat(r) - (1/r)  exp(isCllf(7) exp(ikr) (9) 

where the scattering amplitude f( y )  is given by 

a result obtained by Boulware et al (1976). 
(b) An interpretation for (7) can be arrived at by considering the Green function 

for infinitesimal times. Replacing T in (7) by E we write it as (sSCl is an infinitesimal 
flux) 

where I, is an associated Bessel function. The limit E + 0 may be obtained with the 
aid of the asymptotic expansion 

The result is 

2 Mrr’ 
G(rt ;  r’t’) ~exp( i2E(* - r ’ ) ’+ i s sn+ i -  

M M ‘I2 1 

The sum over J may be evaluated by rewriting a formula given in appendix A of 
Boulware et a1 (1976) 

C (2J+l)iJ(-ikr)di,(0) = f ( ~ M ) ’ / ’ e x p ( i k ~ / 2 )  
J 

x [exp(-i7~/4)Z~-~/~(-fik[) -iIs+l/2(-&)] 

where [ = r( 1 +cos 0)  and 7 = r(1 -cos 0).  Applying expansion (12) on both sides of 
this result we obtain the desired expression: 

C (2J+ l )d i , (y )  exp( -%J(J+l)) i - -2ikr exp(ikT-is2/@). 
J k+O 

The Green function for infinitesimal times is then 
M 3/2 

G(rt; r’t’) e - 0  - (-) 27rlE exp(lM(r-r’)’+is6fl+O(a’’’)). 2E (14) 

Now it is known that the infinitesimal propagator in a vector field A is given by 
(Schulman 1981) 

(&)3’2exp(E(r-r‘)2+ie(r-r‘) 2E - A ( f r + f r ’ )  



L64 Letter to the Editor 

Comparing the last two results we conclude that the flux term sSR in (14) comes from 
the line integral of A. This line integral may be interpreted as an infinitesimal loop 
integral by completing the loop with circular arcs to the z axis. Since these arcs 
intersect A at right angles they do not contribute to the loop integral. Moreover, for 
the finite-time Green function the line integral of A must be responsible for the flux 
term sR in (7), although it is clear that it also contributes to the other factors in the 
Green function. Nevertheless the line integral of A cannot be looked upon as a simple 
loop integral since the quantum propagator involves a sum over paths. Thus the 
non-integrable flux factor hides a ‘sum-over-loop integral’ of the vector field. Note 
that the phase factor for an infinitesimal path is just a flux; for a finite path the 
amplitudes sum up in a complicated way although a flux still emerges. 

(c )  We show that s = half-integer (3). This is the Dirac quantisation condition. 
Consider the amplitude for the charge to make a complete circuit about the string: 
( r ,  e,+) -$ ( r ’ ,  e,+ + 2 ~ ) .  According to the above discussion the Green function is 
proportional to exp(isR) where R is the solid angle subtended by a circular cap around 
the z axis with polar angle 8. Since the description of the system cannot depend on 
the position of the string we expect the Green function to remain unchanged if the 
string were rotated onto the positive z direction. In this case the Green function would 
be proportional to exp(-isR‘) where 52’ is the solid angle of the same cap as viewed 
from the negative z direction. The minus sign is due to the direction of motion of the 
charge. We have then 

exp(is0) = exp( -isR’) 

or 

e x p ( i 4 ~ s )  = 1. 

It follows that 

47~s = 27~n n=0 ,1 ,2 ,  . . .  (16) 
which is the result of Dirac (1931). Our discussion does not make use of classical 
paths around the string. 

The result just obtained allows us to speak of gauge transformation. A shift of the 
string from the negative to the positive z direction is really a gauge transformation. 
Thus the Dirac condition can be looked upon as a statement of the invariance of the 
phase factor around a loop under a gauge transformation. The special choice of the 
z axis for the string does not prevent us from selecting other directions. It follows 
that the invariance of the phase factor is true for any gauge transformation provided 
the Dirac condition is satisfied. We may now follow up this discussion with that of 
Wu and Yang (1975), but this time, however, without having to use the idea of a 
classical path about the monopole. 

( d )  We may extend our discussion to dyon-dyon scattering. The non-relativistic 
problem has been solved by Schwinger er a1 (1976). In terms of the reduced mass p 
and the invariant charge combinations 

s=  -(e,&--e2g*)/fiC 

o= -2CL(e1e2+g1g2)/fi2 
they find that the eigensolutions are given by 
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where Rk( r) is a radial function satisfying the radial Schrodinger equation for Coulomb 
scattering: 

Both bound and scattering solutions exist. When (18) is substituted into the expansion 
for the Green function we obtain an expression of the form 

exp(is0) - 2 J +  d',J( y )  (radial factor). (19) 
J 4 v  

We have not been able to obtain a closed form for the radial factor but it is just what 
one would obtain for pure Coulomb scattering, except that J begins with S, and not 0. 

Two results follow immediately. As in (16), we have 

S = half-integer or zero. 

Also when S = O ,  i.e. scattering of identical dyons, the Green function is formally 
identical to that for pure Coulomb scattering since d g )  = P,. In this special case the 
sum may be evaluated following the method of Hostler (1964). 
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